
On-board Cloud Contamination Detection with
Atmospheric Correction

Kevin Ballou and Jerry Miller
NASA/Goddard Space Flight Center

Greenbelt, MD 20771-0001

Abstract- The ability to perform on-board science data
preprocessing and analysis on a satellite can significantly
reduce the amount of bandwidth and storage required in the
production of space science products. The implementation of
two typical data preprocessing algorithms, cloud
contamination detection and atmospheric correction, can
provide some valuable insight into the feasibility of
implementing more sophisticated processes. Three platforms
are considered in this analysis: the microprocessor, the Field
Programmable Gate Array (FPGA), and the Application
Specific Integrated Circuit (ASIC). By benchmarking the
algorithms on a variety of commercial microprocessors, and
inferring from the results the expected performance of the
available flight-qualified microprocessors, it can be shown
that increasing the sophistication of the processing algorithms
on this platform would become impractical in a real-time
scenario. Hardware implementation of the algorithms, using
FPGAs or ASICs, provides the ability to perform much of the
processing in parallel, thereby enhancing the performance.
The results of benchmarking the hardware implementation of
the algorithms can be compared to the results of the
microprocessor benchmarks. An additional factor that needs
to be addressed with the hardware implementations,
especially with the FPGAs, is the utilization of the resources
available in the devices. Recent advances in the size and
speed of available devices, as well as in the tools used to
synthesize, place and route a design, are making this less of a
concern. One advantage of the FPGA is that they are
relatively quick and easy to program, making them an ideal
platform for development and testing, after which the design
can be ported to an ASIC.

I. INTRODUCTION

 The ability to preprocess and analyze science data on-
board a satellite in real time can significantly reduce the
amount of bandwidth and storage required in the
production of space science products. Implementing and
comparing rudimentary data preprocessing algorithms
across various platforms suitable for use on-board satellites
can provide valuable insight into the feasibility of
implementing more sophisticated algorithms. The two
algorithms implemented in this analysis are cloud
contamination detection (cloud masking) and atmospheric
correction. The platforms under consideration are the
microprocessor, the Field Programmable Gate Array
(FPGA), and the Application Specific Integrated Circuit
(ASIC). The National Oceanic and Atmospheric

Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) instrument produced the data set
used for this analysis, specifically NOAA14 AVHRR
Level 1b, 4 kilometer Global Area Coverage (GAC). The
feasibility of real time processing is determined by
comparing the computational speed of the algorithms on
the various platforms to the AVHRR scan rate.

II. ALGORITHMS

A. Cloud Contamination Detection

 The presence of cloud contamination can hinder the
use of certain satellite data, and these cases require a cloud
detection process to mask out cloudy pixels from further
processing. The cloud detection tests used in this analysis
are based on the work of Saunders and Kriebel [1], except
for the Spatial Coherence Test, which came from
Thiermann and Ruprecht, as discussed by Cracknell [2].
Simplifications were made to the algorithms so they would
be more suitable for hardware implementation.
 The image data is processed pixel by pixel through a
series of threshold tests, which vary depending on the time
of day and underlying surface conditions. For daytime
images, a set of background tests is first used to screen
pixels that are not suitable for the cloud detection tests.
The background tests are comprised of the Sun Glint Test,
Snow/Ice Test, and Desert Test. These background tests
were taken from the Phillips Laboratory, Automated
Satellite Cloud Analysis – Tactical Nephanalysis
(TACNEPH) document [3].

For daytime images, the following tests are applied:

1. Infrared Threshold Test
2. Spatial Coherence Test
3. Visible Threshold Test
4. Near-Infrared to Visible Ratio Test
5. Thin Cirrus Test

For nighttime images, the following tests are applied:

1. Infrared Threshold Test
2. Spatial Coherence Test
3. Fog/Low Stratus Test
4. Medium/High Level Cloud Test
5. Thin Cirrus Test

B. Atmospheric Correction

 The atmosphere can corrupt the surface target
information acquired by a satellite through scattering and
absorption. The more dominant of the two is atmospheric
scattering. The algorithm used in this analysis addresses
this issue, and is based on the basic technique of dark
object subtraction, as discussed by Chavez [4]. The
algorithm has been simplified and adapted for AVHRR
GAC data.

III. MICROPROCESSOR RESULTS

 Three NOAA AVHRR GAC data sets containing land
and water bodies were used for testing: a nighttime image,
a daytime image with minimal sun glint, and a daytime
image with extensive sun glint. To provide a fair
comparison of the various platforms, the Input/Output
(I/O) interfaces were not considered, and only the
computational portions of the algorithms were timed for
comparison. A single scan line of low resolution GAC
data represents approximately one fifth the number of
samples of a scan line of High Resolution Picture
Transmission (HRPT) AVHRR data. Therefore, the
execution times of the algorithms are scaled up by a factor
of five before being divided into the number of scan lines
for the GAC data set under test. This provides a value that
represents the execution speed in terms of scan lines of
HRPT processed per second. This is easily compared with
the AVHRR scan rate of six scans per second.
 Three microprocessors were tested, but only the
PowerPC 750, with an estimated performance rating of
400+ Million Instructions Per Second (MIPS), could
provide a realistic comparison with the currently available
flight-qualified computers. The PowerPC 750 was able to
process the cloud detection algorithm 6-9 times faster than
the AVHRR scan rate, depending on the data set, and the
atmospheric correction algorithm 80-120 times faster than
the AVHRR scan rate.
 The accuracy of the simplified cloud detection
algorithms was measured by comparing the output data to
a cloud mask obtained from the NOAA Clouds from
AVHRR (CLAVR) experimental algorithm. The overall
accuracy of the simplified algorithm varied by as much as
68-89 percent across the three data sets.

IV. HARDWARE PLATFORM

 The hardware platform used for implementing the
algorithms on an FPGA is the Annapolis Microsystems
FIREBIRDTM/PCI reconfigurable computing board. This
board utilizes the Xilinx XCV2000E FPGA, contains 36
Mbytes of on-board memory, and provides processing
clocks up to 150MHz. The Xilinx XCV2000E FPGA

contains over 2.5 million system gates, as well as Block
Random Access Memory (RAM), which can be used to
store arrays of constants. The FIREBIRDTM/PCI board
resides in a host computer, and data is passed between the
host and FPGA using the on-board memory. The host
configures the board by loading an image into the FPGA,
and the board can be reconfigured on the fly. Control of
the FPGA is handled with 64-bit bi-directional registers.

V. HARDWARE DESIGN

 The implementation of the cloud detection algorithms
in the FPGA involved the development of both the host
code, written in C, and the FPGA code, written in Very
High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL). The VHDL code can be
simulated, and there are Annapolis Microsystems tools that
allow the FPGA design to be simulated in conjunction with
the host code. A Floating Point Math Library was also
available from Annapolis Microsystems, which saved the
time and effort that would have been required to develop
the floating point math routines. Once the design has been
functionally simulated, it is synthesized, or translated to a
Xilinx specific gate level implementation. Xilinx tools are
then used to place and route the synthesized design into an
image that can be loaded into the FPGA.
 At this point, the accuracy of the algorithms was not
as important as achieving a good comparison of processing
speed across the various platforms. As long as the output
of the FPGA implementation was identical to that of the
microprocessor, a good comparison could be made.
Therefore, the overall design approach was to implement
the cloud detection algorithm one test at a time. Once all
of the tests were implemented, and the outputs were
successfully compared to the corresponding outputs of the
microprocessor, the various test modules could be
integrated to form the final design. Before any of the tests
could be implemented, the interface between the host
software and the FPGA design had to be developed, which
proved to be a large part of the design effort.
 Because the pixel data for the entire image could not
fit into the on-board memory, it was necessary to develop a
method of breaking the data set into manageable blocks.
In this way, the host could transfer a data block to the on-
board memory and signal the FPGA to begin processing.
While the FPGA was processing the data, it would place
the results in a separate bank of on-board memory, which
was large enough to store the entire cloud mask. The
FPGA would signal the host when processing was
finished. This would repeat until the entire data set was
processed. This method also made it convenient for the
host to accumulate the amount of time that was consumed
by the FPGA in performing the cloud detection algorithm.
 There were several things to consider when breaking
the data set into blocks. There were five possible results

for the cloud mask: CLEAR, CLOUDY, CLEAR_SNOW,
CLEAR_DESERT, and UNCLASSIFIED. Therefore, the
resulting cloud mask for each image pixel was three bits
wide and could fit in a single byte. The memory bank used
to store the resulting cloud mask was 32 bits wide, so on-
board memory could be conserved and the cloud mask
could be stored in its entirety if four byte-wide pixel masks
were packed into each output location. In order to remain
aligned with the input scan line boundary as well as the
output word boundary, the data set was broken into the
largest possible blocks that contained an even multiple of
four scan lines.
 Most of the tests could be performed on a single
independent pixel. However, the Spatial Coherence Test
involved inspection of a sliding 3x3 pixel window, which
meant that each data block, except the first, would need to
include the last scan line from the previous data block.
The 3x3 pixel window complicated the Spatial Coherence
Test algorithm, and necessitated many additional memory
accesses for each pixel.

VI. PRELIMINARY RESULTS

 At the time of this writing, all of the individual tests
were successfully implemented and tested using the
nighttime image. The resulting cloud masks were identical
to those generated by the corresponding microprocessor
algorithms. Unfortunately, when all of the tests were
integrated, the design exceeded the available resources of
the FPGA. This was a first run at the design, and there are
still ways of optimizing the space utilization of the design.
One method, which would demonstrate the advantage of
the reconfigurable architecture, would be to split the
design into two parts. One would process nighttime
images, and the other would process daytime images.
Depending on the time of day, the host would load the
appropriate FPGA image into the FIREBIRDTM/PCI board.
 Since the individual tests will be run in parallel in an
integrated design, computational speed performance
information can be obtained by looking at the execution
times for the individual tests. Generally, the integrated
design can only execute as fast as the slowest test.
Exceptions to this would be when the results from a faster
test supersede those of the slower test, in which case the
slower test would not need to be carried through to
completion. Also, the execution times of the various tests
could vary depending on the pixel data being tested. For
instance, the Spatial Coherence Test requires all members
of the 3x3 pixel window to have the same underlying
surface conditions, i.e. Land or Sea. If this is determined
not to be the case, the test is aborted.
 A preliminary examination of the execution times
indicates that most of the tests could process the entire
nighttime image in well under half a second. The two
exceptions were the Spatial Coherence Test, which took

just over a second, and the Thin Cirrus Test, which took
just under a second. There most likely are ways to
optimize the time performance of the test implementations,
but the preliminary results are still able to offer some
valuable insight. For instance, if we assume worst case an
execution time of 1.5 seconds, scale it up by the factor of
5, and divide it into the 628 scan lines of nighttime image
data, we get a result of approximately 84 scan lines per
second, or 14 times faster than the AVHRR scan rate. This
is about twice as fast as the PowerPC 750. A similar, if
not greater, performance improvement is expected for the
atmospheric correction algorithm, as well as the ASIC
platform.

VII. CONCLUSIONS

 While there is still much work to be done, this
analysis has already demonstrated several things.
Although the PowerPC 750 was able to process the cloud
detection algorithm 6-9 times faster than data was being
scanned in, this commercial processor is at least 100 MIPS
more powerful than its radiation hardened counterpart.
Although this design ran into problems with FPGA
resource constraints, there are FPGA devices available
now with three times the number of system gates available.
Since these parts are much larger than their radiation
hardened counterparts, radiation tolerance requirements
again become a factor and must be considered when
implementing a system design. This analysis has shown
that the reconfigurable computing platform can be a
valuable tool in the development cycle of a hardware
design. As the FPGA devices grow in size and
complexity, it will become increasingly feasible to
implement even more complex real time data processing
algorithms. In turn, FPGA devices and reconfigurable
computing platforms can play an important role in
reducing the amount of bandwidth and storage required for
producing space science products.

REFERENCES

[1] R.W. Saunders and K.T. Kriebel, “An improved method for
detecting clear sky and radiances from AVHRR data,” International
Journal of Remote Sensing, vol. 9, no. 8, pp. 123-149, August 1988.

[2] A.P. Cracknell, The Advanced Very High Resolution Radiometer,

1997.

[3] G.B. Gustafson, R.G. Isaacs, J.M. Sparrow, D.C. Peduzzi, and J.S.
Belfiore, “Automated satellite cloud analysis – tactical nephanalysis
(TACNEPH),” Phillips Laboratory Directorate of Geophysics, Air
Force Materiel Cmd, Hanscom AFB MA, PL-TR-94-2160,
November 1988.

[4] P.S. Chavez, Jr., “An improved dark-object subtraction technique

for atmospheric scattering correction of multispectral data,” Remote
Sensing of Environment, vol. 24, no. 3, pp. 459-479, April 1988.

